

RISK STRATIFICATION AND SCORING SYSTEM MODELS IN APS

Savino Sciascia, MD, PhD

Center of Research of Immunopathology and Rare Diseases
University of Torino

11th Meeting of the European Forum on Antiphospholipid Antibodies

Maastricht, Sept 2018

Biomarker Vs Risk Factor

Thrombosis and/or PM

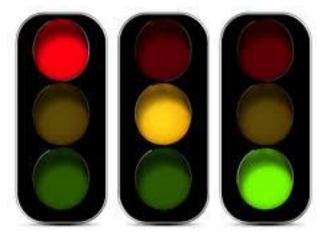
aPL testing

NO APS

Biomarker Vs Risk Factor

aPL testing

Risk of thrombosis and/or PM


Biomarker Vs Risk Factor

aPL testing

Risk of thrombosis and/or PM

How do we assess the risk of aPL-related manifestations?

- Full thrombophilia screen
- Activity of the autoimmune diseases
- Other cardiovascular risk factors
- Presence of aPL
 - LA is the strongest risk factor

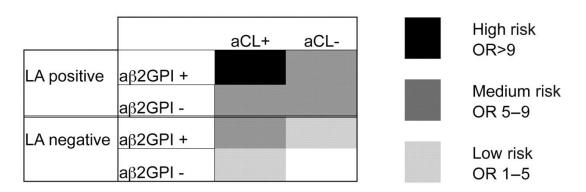
Galli et a. Blood 2003

Double or triple positivity

 the risk

Quantify the risk for patients

When high risk is high enough?



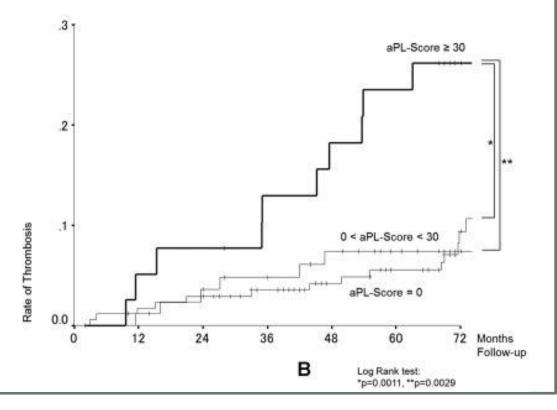
SCORE SYSTEMS IN APS

Ann Rheum Dis 2011;**70**:1517-1518 doi:10.1136/ard.2010.145177.

Risk Scale for the diagnosis of antiphospholipid syndrome

Savino Sciascia¹, Domenico Cosseddu², Barbara Montaruli², Anna Kuzenko¹, Maria Tiziana Bertero¹

	aCL and aβ2G	PI titre		
Methods for LA test	NEGATIVE < 10 U	LOW 10–30 U	MEDIUM 30–50 U	HIGH >50 U
SCT				
кст				
DRVVT				
PTT-LA\STACLOT LA				

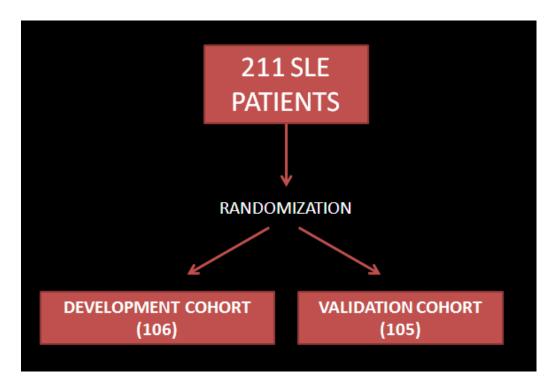

SCORE SYSTEMS IN APS

ARTHRITIS & RHEUMATISM Vol. 64, No. 2, February 2012, pp 504-512

Efficacy of the Antiphospholipid Score for the Diagnosis of Antiphospholipid Syndrome and Its Predictive Value for Thrombotic Events

Kotaro Otomo, Tatsuya Atsumi, Olga Amengual, Yuichiro Fujieda, Masaru Kato, Kenji Oku, Tetsuya Horita, Shinsuke Yasuda, and Takao Koike

GAPSS: aim


To develop a risk score (Global APS Score or GAPSS)
 derived from the combination of independent risk of
 thrombosis and pregnancy loss, taking into account:

- aPL profile (criteria and non-criteria aPL),
- conventional cardiovascular risk factors
- SLE autoimmune antibodies profile

To validate this score by testing GAPSS in a separate cohort of patients.

Randomisation

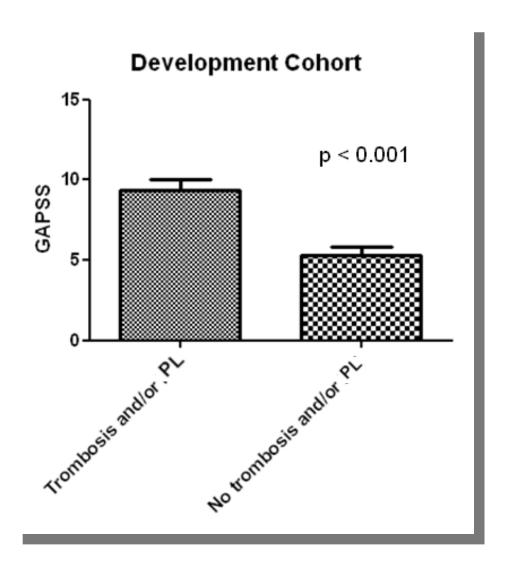
- Patients were randomly divided in 2 sets.
- Computer-generated randomized list of patients filtered by the criterion of the diagnosis in order to equally distribute the diseases prevalence (SLE and APS, SLE and aPL positivity or SLE alone)

To confirm the efficacy of randomization, the prevalence of the variables in the 2 sets were computed and no statistical difference were found

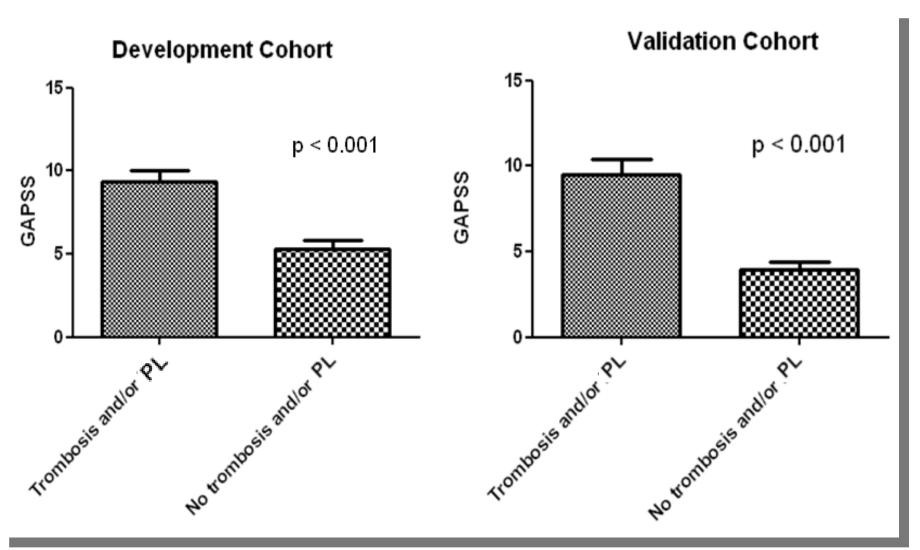
Results

DEVELOPMENT COHORT (n=106)

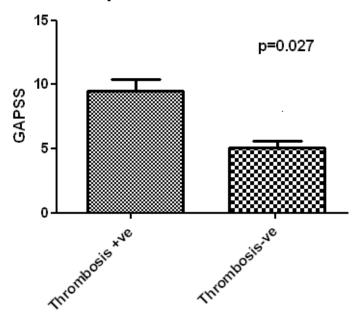
	OR	CI [95%]	р
Characteristic			
Conventional thrombotic risk factor ≥1	1.84	0.782-4.253	NS
Smoking	0.823	0.353-1.920	NS
Oral Contraceptive pill	0.558	0.160-1.950	NS
Hyperlipemia	2.492	1.28-5.918	0.036
Arterial hypertension	1.831	1.099-8.280	0.035
Diabetes	1.831	0.81-21.938	NS
Hormone replacement therapy	3.55	0.655-13.23	NS
dsDNA	1.63	0.738-3.59	NS
ENA	1.304	1.127-2.780	0.039
RO	0.471	0.188-9.178	NS
LA	1.885	0.315-7.482	NS
RNP	1.324	1.116-6.09	0.047
Sm	0.369	0.124- 2.0979	NS
LA	1.885	1.116-8.507	0.031
aCL IgG/IgM	3.998	1.987- 10.448	0.023
aβ₂GPI IgG/IgM	3.98	1.462- 10.892	0.049
aPT lgG/lgM	2.778	1.037-7.47	 0.034
aPS/PT lgG/lgM	2.133	1.368-7.128	0.006
aPrS IgG	1.424	0.177-8.22	NS
aPE lgG/lgM	1.997	0.457-2.193	

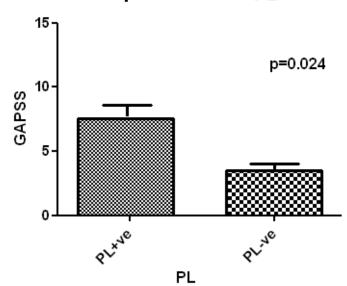

Development and validation of GAPSS

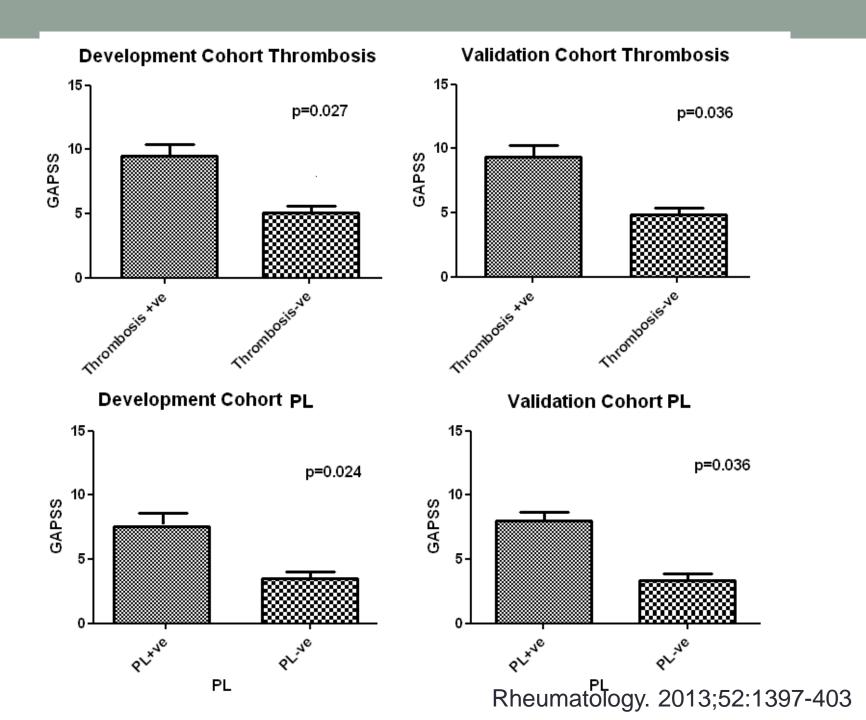
To calculate GAPSS, we assigned each of the six variables identified in the development cohort as independent risk factors for thrombosis and/or pregnancy morbidity, a number of points that was proportional to its regression coefficient


	β Coefficient	GAPSS*
Hyperlipidemia	1.73	3
Arterial hypertension	0.54	1
aCL IgG/IgM	2.63	5
Anti-β2GPI IgG/IgM	2.02	4
aPS/PT IgG/IgM	1.78	3
LA	2.35	4

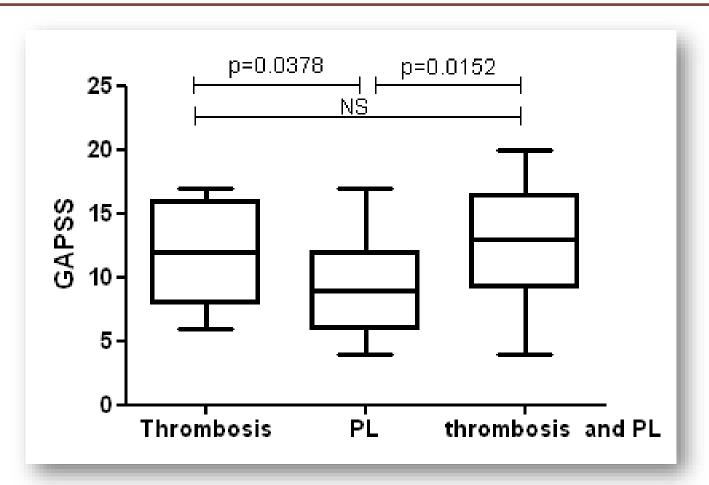
^{*}Assignment of points to risk factors was based on a linear transformation of the corresponding β regression coefficient by using the formula GAPSS= $[\beta_x / \beta_{min}]$, where β_X is the β regression coefficient for the variable X and β_{min} is the lowest β value among the significant variables in the whole population after multivariate analysis. For example, in this cohort, the GAPSS for hyperlipidemia is 3, as GAPSS= $[\beta_{hyperlipidemia} / \beta_{arterial hypertension}]$ = [1.73/0.54]=3.20=3, when rounded to the nearest integer.


Development and validation of GAPSS

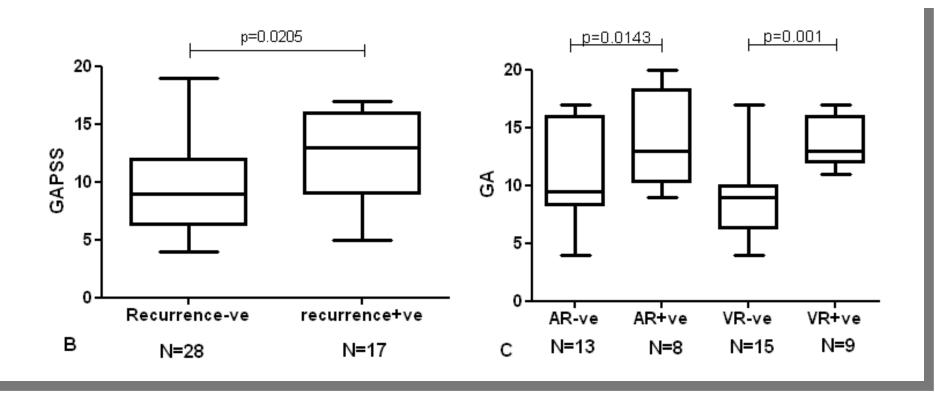

Development and validation of GAPSS



Development Cohort Thrombosis



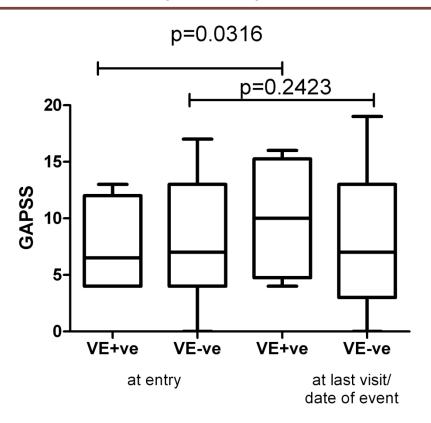
Development Cohort PL



Clinical relevance of the in a cohort of primary APS patients (N=62)

Higher values of GAPSS were showed in patients who experienced thrombosis compared to those with pregnancy loss alone

PAPS with thrombotic recurrences showed higher values of GAPSS compared to those without

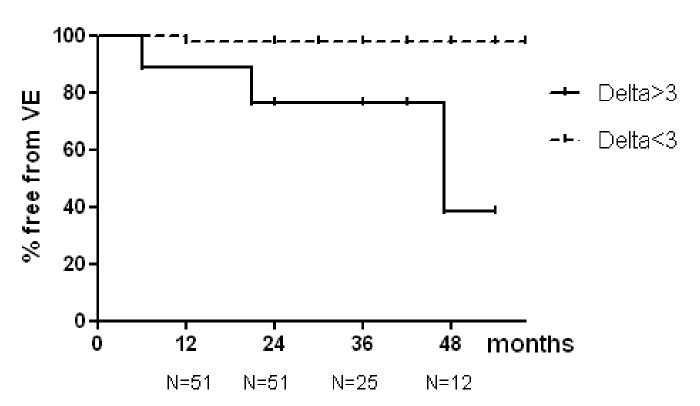

AR= arterial recurrences

VR= venous recurrences

	Sensitivity (%)	Specificity (%)	OR	[95%IC]
Cut off 5	100	8.3	1.78	1.345-2.336
Cut off 7	100	29.2	1.85	1.375-2.490
Cut off 8	100	16.7	2.00	1.429-2.799
Cut off 9	100	33.3	7.01	1.783-63.21
Cut off 10	100	54.2	8.5	2.001-75.81
Cut off 11	94.1	78.0	18.27	3.74-114.05
Cut off 12	88.2	78.0	20.64	3.92-185.92
Cut off 15	35.3	83.3	21.64	3.89-189.56

GAPSS values ≥ 11 are strongly associated with higher risk of recurrences

Validation of GAPSS in a prospective cohort (n=51)


An increase in the GAPSS (entry vs. last visit) was seen in patients who experienced thrombosis (n=4)

No changes were observed in those without thrombotic event (n=47)

Arthritis Care Res. 2014;66:1915-20

Validation of GAPSS in a prospective cohort (n=51)

p=0.0027

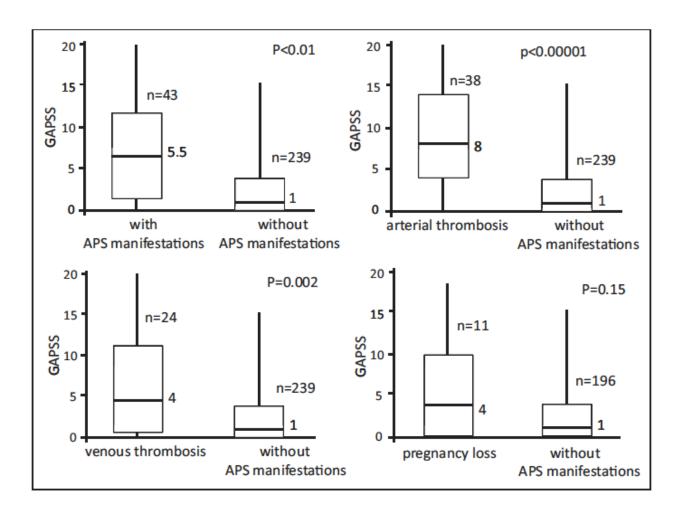
The cumulative proportion of thrombosis-free individuals was higher in the patients whose GAPSS was not increased by \geq 3 points (p=0.002)

Validity of the global anti-phospholipid syndrome score to predict thrombosis: a prospective multicenter cohort study

Validity of the global anti-phospholipid syndrome score to predict thrombosis: a 4 prospective multicentre cohort study TABLE 2 Prediction of thrombosis using GAPSS according to different cut-off values in univariate survival analysis GAPSS cut-Frequency of thrombosis in patients with a Frequency of thrombosis in patients with a Univariate analysis HR Poff value positive GAPSS, n/N (%) negative GAPSS, n/N (%) (95% CI) value >10 0.29 8/51 (16) 8/86 (9) 1.73 (0.63, 4.79) >12 7/34 (21) 9/103 (9) 2.48 (0.89, 6.92) 0.08

13/132 (10)

GAPSS: global APS score; HR: hazard ratio.


3/5 (60)

>16

6.86 (1.90, 24.77)

0.003

An independent validation of the Global Anti-Phospholipid Syndrome Score in a Japanese cohort of patients with autoimmune diseases

Oku, K et al. Lupus. 2015;24:774-5.

STUDY	YEAR	STUDY DESIGN	AIM	NUMBER OF PATIENTS	PATIENTS' CHARACTERISTICS
Sciascia et al.	2013	Cross- Sectional	To validate the first GAPSS score with a validation cohort	105	SLE
Sciascia et al.	2014	Prospective	To prospectively and independently validate GAPSS, with a follow-up of mean 32.94 (SD 12.06) months	51	SLE aPL positive patients
Zuily et al.	2015	Prospective	To investigate the validity of the global APS score (GAPSS) to predict thrombosis in patients with autoimmune diseases, followed up for a mean duration of 43.1 (S.D. 20.7) months	137	patients with aPL and/or SLE
Oku et al.	2015	Retrospectiv e	To validate the GAPSS independently	282	41 APS (17 PAPS) patients, 88 SLE without APS, 50 rheumatoid arthritis, 16 Sjögren's syndrome, 21 systemic sclerosis, 10 polymyositis/dermatomyositis and 56 other autoimmune diseases
Sciascia et al.	2015	Retrospectiv e	To evaluate the clinical relevance of the global APS score (GAPSS) in a cohort of primary APS patients	62	PAPS patients
Zigon et al.	2016	Retrospectiv e	To evaluate association of different risk factors with thrombosis; and b) to apply GAPSS on a large cohort of unselected Slovenian patients	585	Systemic Autoimmune Diseases
Sciascia et al.	2016	Retrospectiv e	To evaluate the clinical utility of the GAPSS with the help of APS ACTION Registry	550	APS Patients
Zu et al.	2016	Retrospectiv e	To evaluate the clinical revalence of aGAPSS in a chinese cohort	89	89 APS Patients
Fernandez Mosteirin et al.	2017	Retrospectiv e	To independently validate the aGAPSS to predict thrombosis in a cohort of patients with APS and/or autoimmune disease	319	PAPS diagnosed in 130 patients and 89 SAPS patients, and 100 patients with autoimmune disease without APS
Radin et al.	2017	Retrospectiv e	To investigate the validity of aGAPSS in young patients with myocardial infarction	83	APS Patients

Sciascia & Bertolaccini, Rheumatology 2017

	Risk Scale for APS Diagnosis	aPL-S	GAPSS
Year	2011	2013	2013
APS Risk assessment	Yes	Yes	Yes
Thrombotic risk assessment	No	Yes	Yes
PM risk assessment	No	Yes	Yes
aPL			
LA	Yes~	Yes~	Yes#
aCL	Yes	Yes	Yes
aβ2GPI	Yes	Yes	Yes
aPS/PT	No	Yes~	Yes~
Cardiovascular Risk Factors	No	No	Yes*
Approach	Semi- quantitative	Quantitative	Quantitative

	Risk Scale for APS Diagnosis	aPL-S	GAPSS
Year	2011	2013	2013
APS Risk assessment	Yes	Yes	Yes
Thrombotic risk assessment	No	Yes	Yes
PM risk assessment	No	Yes	Yes
aPL			
LA	Yes~	Yes~	Yes#
aCL	Yes	Yes	Yes
aβ2GPI	Yes	Yes	Yes
aPS/PT	No	Yes~	Yes~
Cardiovascular Risk Factors	No	No	Yes*
Approach	Semi- quantitative	Quantitative	Quantitative

	Risk Scale for APS Diagnosis	aPL-S	GAPSS
Year	2011	2013	2013
APS Risk assessment	Yes	Yes	Yes
Thrombotic risk assessment	No	Yes	Yes
PM risk assessment	No	Yes	Yes
aPL			
LA	Yes~	Yes~	Yes#
aCL	Yes	Yes	Yes
aβ2GPI	Yes	Yes	Yes
aPS/PT	No	Yes~	Yes~
Cardiovascular Risk Factors	No	No	Yes*
Approach	Semi- quantitative	Quantitative	Quantitative

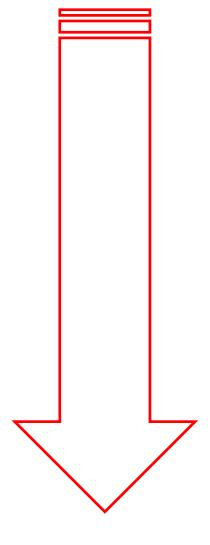
	Risk Scale for APS Diagnosis	aPL-S	GAPSS
Year	2011	2013	2013
APS Risk assessment	Yes	Yes	Yes
Thrombotic risk assessment	No	Yes	Yes
PM risk assessment	No	Yes	Yes
aPL			
LA	Yes~	Yes~	Yes#
aCL	Yes	Yes	Yes
aβ2GPI	Yes	Yes	Yes
aPS/PT	No	Yes~	Yes~
Cardiovascular Risk Factors	No	No	Yes*
Approach	Semi- quantitative	Quantitative	Quantitative

RISK ASSESMENT

Sydney Criteria

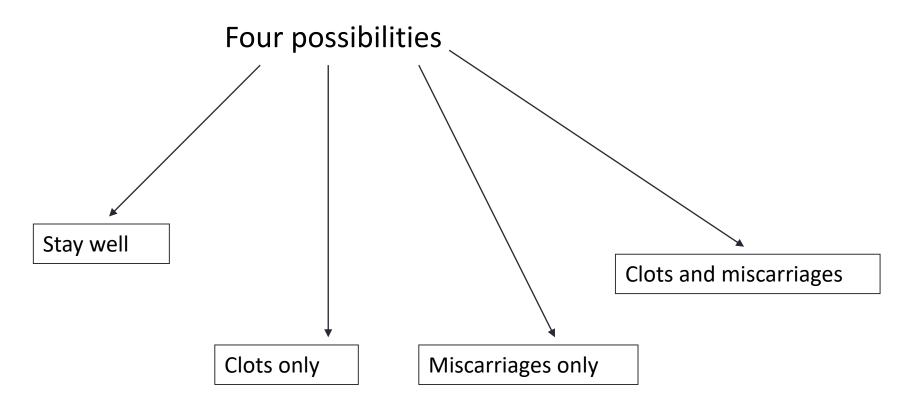
GAPPS

aPL-S

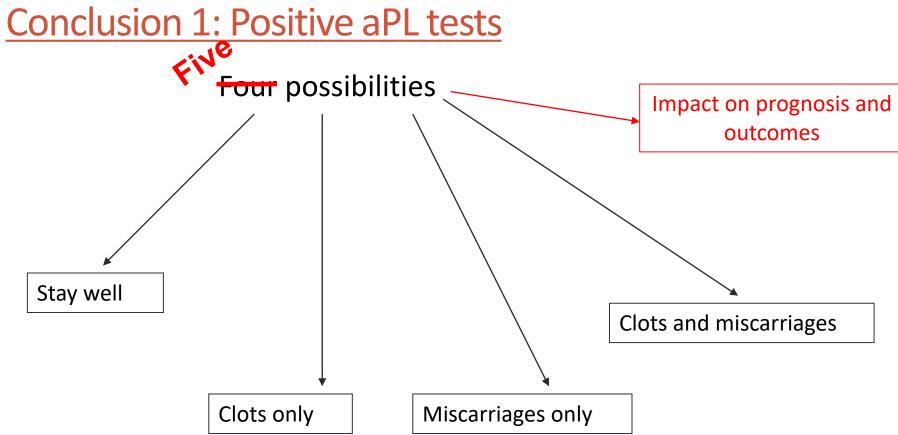

aPL Postivity

Triple Postivity

Extra Criteria test/manifestations


CV risk factors

GAPSS> 12 or aPL-S>30



HIGH RISK

Positive aPL tests

THERE IS CURRENTLY NO TEST TO PREDICT ACCURATELY WHICH GROUP YOU WILL BE IN

